Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37896734

RESUMO

This paper presents a compact RF energy harvesting wireless sensor node with the antenna, rectifier, energy management circuits, and load integrated on a single printed circuit board and a total size of 53 mm × 59.77 mm × 4.5 mm. By etching rectangular slots in the radiation patch, the antenna area is reduced by 13.9%. The antenna is tested to have an S11 of -24.9 dB at 2.437 GHz and a maximum gain of 4.8 dBi. The rectifier has a maximum RF-to-DC conversion efficiency of 52.53% at 7 dBm input energy. The proposed WSN can achieve self-powered operation at a distance of 13.4 m from the transmitter source. To enhance the conversion efficiency under different input energy densities, this paper establishes an energy model for two operating modes and proposes an energy-intensity adaptive management algorithm. The experiments demonstrated that the proposed WSN can effectively distinguish between the two operating modes based on input energy intensity and realize efficient energy management.

2.
Micromachines (Basel) ; 14(10)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37893404

RESUMO

This paper presents a compact stacked RF energy harvester operating in the WiFi band with multi-condition adaptive energy management circuits (MCA-EMCs). The harvester is divided into antennas, impedance matching networks, rectifiers, and MCA-EMCs. The antenna is based on a polytetrafluoroethylene (PTFE) substrate using the microstrip antenna structure and a ring slot in the ground plane to reduce the antenna area by 13.7%. The rectifier, impedance matching network, and MCA-EMC are made on a single FR4 substrate. The rectifier has a maximum conversion efficiency of 33.8% at 5 dBm input. The MCA-EMC has two operating modes to adapt to multiple operating conditions, in which Mode 1 outputs 1.5 V and has a higher energy conversion efficiency of up to 93.56%, and Mode 2 supports a minimum starting input voltage of 0.33 V and multiple output voltages of 2.85-2.45 V and 1.5 V. The proposed RF energy harvester is integrated by multiple-layer stacking with a total size of 53 mm × 43.5 mm × 5.9 mm. The test results show that the proposed RF energy harvester can drive a wall clock (30 cm in diameter) at 10 cm distance and a hygrometer at 122 cm distance with a home router as the transmitting source.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...